Mark Scheme (Results)
June 2011

GCE Further Pure FP3 (6669) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 08445760025 or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011
Publications Code UA027971
All the material in this publication is copyright
© Edexcel Ltd 2011
advancing learning, changing lives

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol wifl be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

J une 2011
 Further Pure Mathematics FP3 6669
 Mark Scheme

Question Number	Scheme	Marks
1.	$\begin{array}{r} \frac{\mathrm{d} y}{\mathrm{~d} x}=6 x^{2} \text { and so surface area }=2 \pi \int 2 x^{3} \sqrt{\left(1+\left(6 x^{2}\right)^{2}\right.} \mathrm{d} x \\ =4 \pi\left[\frac{2}{3 \times 36 \times 4}\left(1+36 x^{4}\right)^{\frac{3}{2}}\right] \end{array}$ Use limits 2 and 0 to give $\frac{4 \pi}{216}[13860.016-1]=806$ (to 3 sf)	$\begin{aligned} & \text { B1 } \\ & \text { M1 A1 } \\ & \text { DM1 A1 } \end{aligned}$
$\begin{array}{r} \text { B1 } \\ \text { 1M1 } \\ \\ \text { 1A1 } \\ \text { 2DM1 } \\ \text { 2A1 } \end{array}$	Notes: Both bits CAO but condone lack of 2π Integrating $\int\left(y \sqrt{1+\left(\text { their } \frac{d y}{d x}\right)^{2}}\right) d x$, getting $k\left(1+36 x^{4}\right)^{\frac{3}{2}}$, condone lack of 2π If they use a substitution it must be a complete method. CAO Correct use of 2 and 0 as limits CAO	
2. (a) (i) (ii)	$\frac{d y}{d x}=\frac{x}{\sqrt{\left(1-x^{2}\right)}}+\arcsin x$ At given value derivative $=\frac{1}{\sqrt{3}}+\frac{\pi}{6}=\frac{2 \sqrt{3}+\pi}{6}$	$\begin{array}{\|ll} \text { M1 A1 } & \\ \text { B1 } & \text { (2) } \\ & \\ \hline \end{array}$
(b)	$\begin{aligned} & \frac{d y}{d x}=\frac{6 e^{2 x}}{1+9 e^{4 x}} \\ & =\frac{6}{e^{-2 x}+9 e^{2 x}} \\ & =\frac{3}{\frac{5}{2}\left(e^{2 x}+e^{-2 x}\right)+\frac{4}{2}\left(e^{2 x}-e^{-2 x}\right)} \\ & \therefore \frac{d y}{d x}=\frac{3}{5 \cosh 2 x+4 \sinh 2 x} \end{aligned}$	1M1 A1 2M1 3M1 A1 cso
(a) $\begin{array}{r}\mathrm{M} 1 \\ \\ \mathrm{~A} 1 \\ \mathrm{~B} 1\end{array}$	Notes: Differentiating getting an arcsinx term and $a \frac{1}{\sqrt{1 \pm x^{2}}}$ term CAO CAO any correct form	

Question Number	Scheme	Marks
$\begin{array}{r} \text { (b) } 1 \mathrm{M} 1 \\ \text { 1A1 } \\ \text { 2DM1 } \\ \text { 2A1 } \end{array}$	Integrating to get a \ln or hyperbolic term CAO Correctly using limits. CAO	
4. (a)	$\begin{aligned} & I_{n}=\left[\frac{x^{3}}{3}(\ln x)^{n}\right]-\int \frac{x^{3}}{3} \times \frac{n(\ln x)^{n-1}}{x} d x \\ & =\left[\frac{x^{3}}{3}(\ln x)^{n}\right]_{1}^{e}-\int_{1}^{e} \frac{n x^{2}(\ln x)^{n-1}}{3} d x \\ & \therefore I_{n}=\frac{e^{3}}{3}-\frac{n}{3} I_{n-1} \quad * \end{aligned}$	M1 A1 DM1 A1cso
(b) (a)1M1 1A1 2DM1 2A1 (b) 1M1 1A1 2M1 2A1	$\begin{aligned} & I_{0}=\int_{1}^{e} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{1}^{e}=\frac{e^{3}}{3}-\frac{1}{3} \text { or } I_{1}=\frac{e^{3}}{3}-\frac{1}{3}\left(\frac{e^{3}}{3}-\frac{1}{3}\right)=\frac{2 e^{3}}{9}+\frac{1}{9} \\ & I_{1}=\frac{e^{3}}{3}-\frac{1}{3} I_{0}, I_{2}=\frac{e^{3}}{3}-\frac{2}{3} I_{1} \text { and } I_{3}=\frac{e^{3}}{3}-\frac{3}{3} I_{2} \text { so } I_{3}=\frac{4 e^{3}}{27}+\frac{2}{27} \end{aligned}$ Notes: Using integration by parts, integrating x^{2}, differentiating $(\ln x)^{n}$ CAO Correctly using limits 1 and e CSO answer given Evaluating I_{0} or I_{1} by an attempt to integrate something CAO Finding I_{3} (also probably I_{1} and I_{2}) If ' n 's left in M0 $I_{3} \mathrm{CAO}$	M1 A1 M1 A1 (4)

Question Number		Marks	
(a)		Graph of $y=$	B1
3sinh2x			

Question Number	Scheme	Marks
6. (a)	$\mathbf{n}=(2 \mathbf{j}-\mathbf{k}) \times(3 \mathbf{i}+2 \mathbf{j}+2 \mathbf{k})=6 \mathbf{i}-3 \mathbf{j}-6 \mathbf{k}$ o.a.e. (e.g. $2 \mathbf{i}-\mathbf{j}-2 \mathbf{k})$	M1 A1
(b)	Line l has direction $2 \mathbf{i}-2 \mathbf{j}$ - \mathbf{k} Angle between line l and normal is given by $(\cos \beta$ or $\sin \alpha)=\frac{4+2+2}{\sqrt{9} \sqrt{9}}=\frac{8}{9}$ $\alpha=90-\beta=63$ degrees to nearest degree.	B1 M1 A1ft A1 awrt (4)
(c) Alt 1	Plane P has equation $\mathbf{r} .(2 \mathbf{i}-\mathbf{j}-2 \mathbf{k})=1$ Perpendicular distance is $\frac{1-(-7)}{\sqrt{9}}=\frac{8}{3}$	M1 A1 M1 A1 (4) 10
(c) Alt 2	Parallel plane through A has equation $\mathbf{r} . \frac{2 \mathbf{i}-\mathbf{j}-2 \mathbf{k}}{3}=\frac{-7}{3}$ Plane P has equation \mathbf{r}. $\frac{2 \mathbf{i}-\mathbf{j}-2 \mathbf{k}}{3}=\frac{1}{3}$ So O lies between the two and perpendicular distance is $\frac{1}{3}+\frac{7}{3}=\frac{8}{3}$	$\begin{aligned} & \text { M1 A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$
(c) Alt 3	Distance A to $(3,1,2)=\sqrt{2^{2}+2^{2}+1^{2}}=3$ Perpendicular distance is ' 3 ' $\sin \alpha=3 \times \frac{8}{9}=\frac{8}{3}$	M1A1 M1A1
(c) Alt 4	Finding Cartesian equation of plane $\mathrm{P}: 2 \mathrm{x}-\mathrm{y}-2 \mathrm{z}-1=0$ $\mathrm{d}=\frac{\left\|n_{1} \alpha+n_{2} \beta+n_{3} \gamma+d\right\|}{\sqrt{n_{1}^{2}+n_{2}^{2}+n_{3}^{2}}}=\frac{\|2(1)-1(3)-2(3)-1\|}{\sqrt{2^{2}+1^{2}+2^{2}}}=\frac{8}{3}$	M1 A1 M1A1
(a) M1 (b) B1 M1 1A1ft (c) 1M1 1A1 2M1 2A1	Notes: Cross product of the correct vectors CAO o.e. CAO Angle between ' $2 \mathbf{i}-\mathbf{j}-2 \mathbf{k}$ ' and $2 \mathbf{i}-2 \mathbf{j}-\mathbf{k}$, formula of correct form 8/9ft CAO awrt Eqn of plane using $2 \mathbf{i}-\mathbf{j}-2 \mathbf{k}$ or dist of A from O or finding length of AP Correct equation (must have $=$) or A to $(3,1,2)=3$ Using correct method to find perpendicular distance CAO	

Question Number	Scheme	Marks
7. (a)	Det $\mathbf{M}=k(0-2)+1(1+3)+1(-2-0)=-2 k+4-2=2-2 k$	M1 A1
(b)	$\mathbf{M}^{T}=\left(\begin{array}{ccc} k & 1 & 3 \\ -1 & 0 & -2 \\ 1 & -1 & 1 \end{array}\right) \text { so cofactors }=\left(\begin{array}{ccc} -2 & -1 & 1 \\ -4 & k-3 & k+1 \\ -2 & 2 k-3 & 1 \end{array}\right)$ (-1 A mark for each term wrong) $\mathbf{M}^{-1}=\frac{1}{2-2 k}\left(\begin{array}{ccc} -2 & -1 & 1 \\ -4 & k-3 & k+1 \\ -2 & 2 k-3 & 1 \end{array}\right)$	M1 M1 A3
(c)	Let (x, y, z) be on l_{1}. Equation of l_{2} can be written as $\left(\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right)=\left(\begin{array}{l}4 \\ 1 \\ 7\end{array}\right)+\lambda\left(\begin{array}{l}4 \\ 1 \\ 3\end{array}\right)$. Use $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\mathbf{M}^{-1}\left(\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right)$ with $k=$ 2. i.e. $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\frac{1}{-2}\left(\begin{array}{ccc}-2 & -1 & 1 \\ -4 & -1 & 3 \\ -2 & 1 & 1\end{array}\right)\left(\begin{array}{c}4+4 \lambda \\ 1+\lambda \\ 7+3 \lambda\end{array}\right)$ $\therefore\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\left(\begin{array}{c} 3 \lambda+1 \\ 4 \lambda-2 \\ 2 \lambda \end{array}\right)$ and so $(\mathbf{r}-\mathbf{a}) \times \mathbf{b}=\mathbf{0}$ where $\mathbf{a}=\mathbf{i}-2 \mathbf{j}$ and $\mathbf{b}=3 \mathbf{i}+4 \mathbf{j}+2 \mathbf{k}$ or equivalent or $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}$ where $\mathbf{a}=\mathbf{i}-2 \mathbf{j}$ and $\mathbf{b}=3 \mathbf{i}+4 \mathbf{j}+2 \mathbf{k}$ or equivalent	B1 M1 M1 A1 B1ft
(b) 1M1 2M1 1A1 $2 A 1$ 3A1 (c) 1B1 1M1 2M1 A1 2B1	Notes: Finding determinant at least one component correct. CAO Finding matrix of cofactors or its transpose Finding inverse matrix, $1 /(\mathrm{det})$ cofactors + transpose At least seven terms correct (so at most 2 incorrect) condone missing det At least eight terms correct (so at most 1 incorrect) condone missing det All nine terms correct, condone missing det Equation of l_{2} Using inverse transformation matrix correctly Finding general point in terms of λ. CAO for general point in terms of one parameter ft for vector equation of their l_{1}	

advancing learning, changing lives

Question Number	Scheme	Marks
8. (a)1M1 1A1 2M1 2A1 (b)M1 A1ft (c) A1 (d) 1M1 1A1 2M1 3M1 4M1 2A1 (d) 1M1 1A1 2M1 3M1 4M1 2A1	Finding gradient in terms of θ CAO Finding equation of tangent CSO (answer given) look for $\pm\left(\cosh ^{2} \theta-\sinh ^{2} \theta\right.$) Putting $y=0$ into their tangent P found, ft for their tangent o.e. Putting $x=a$ into their tangent. CAO Q found o.e. For Alt 1 and 2 Finding expressions, in terms of $\sinh \theta$ and $\cosh \theta$ but must be adding Ft on their P and Q , Finding $4 y^{2}+b^{2}$ Simplified, factorised, maximum of 2 terms per bracket Finding $x\left(4 y^{2}+b^{2}\right)$, completely factorised, maximum of 2 terms per bracket CSO For Alts 3, 4 and 5 Finding expressions, in terms of $\sinh \theta$ and $\cosh \theta$ but must be adding Ft on their P and Q Getting $\cosh \theta$ in terms of x y or y^{2} in terms of $\cosh \theta$ or $\sinh \theta$ in terms of x and y Getting equation in terms of x and y only. No square roots. CSO	

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA027971 June 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

