

Mark Scheme (Results)

June 2011

GCE Further Pure FP3 (6669) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025 or visit our website at <u>www.edexcel.com</u>.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011 Publications Code UA027971 All the material in this publication is copyright © Edexcel Ltd 2011

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- L The second mark is dependent on gaining the first mark

Question	Sahama	Morke	
Number	Scheme	Marks	
1.	$\frac{dy}{dx} = 6x^2$ and so surface area $= 2\pi \int 2x^3 \sqrt{(1+(6x^2)^2)^2} dx$	B1	
	$= 4\pi \left[\frac{2}{3 \times 36 \times 4} (1 + 36x^4)^{\frac{3}{2}} \right]$	M1 A1	
	Use limits 2 and 0 to give $\frac{4\pi}{216} [13860.016 - 1] = 806$ (to 3 sf)	DM1 A1	
			5
	Both bits CAO but condone lack of 2π		
1M1	Integrating $\int \left(y \sqrt{1 + \left(\text{their} \frac{dy}{dx} \right)^2} \right) dx$, getting $k(1 + 36x^4)^{\frac{3}{2}}$, condone lack of 2π		
	If they use a substitution it must be a complete method. CAO		
	Correct use of 2 and 0 as limits CAO		
2. (a) (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{\sqrt{(1-x^2)}} + \arcsin x$	M1 A1	(2)
(ii)	At given value derivative $=\frac{1}{\sqrt{3}} + \frac{\pi}{6} = \frac{2\sqrt{3} + \pi}{6}$	B1	(1)
(b)	$\frac{dy}{dx} = \frac{6e^{2x}}{1+9e^{4x}}$	1M1 A1	
	$dx 1+9e^{4x} = \frac{6}{e^{-2x}+9e^{2x}}$	2M1	
	$= \frac{6}{e^{-2x} + 9e^{2x}}$ = $\frac{3}{\frac{5}{2}(e^{2x} + e^{-2x}) + \frac{4}{2}(e^{2x} - e^{-2x})}$ = $\frac{4y}{3}$	3M1	
	$\therefore \frac{dy}{dx} = \frac{3}{5\cosh 2x + 4\sinh 2x} $ *	A1 cso	
			(5) 8
	<u>Notes</u> :		
(a) M1			
	CAO CAO any correct form		

June 2011 Further Pure Mathematics FP3 6669 Mark Scheme

GCE Further Pure Mathematics FP3 (6669) June 2011

Question Number	Scheme	Marks
(b) 1M1	Of correct form $\frac{ae^{2x}}{1+be^{4x}}$	
1A1 2M1 3M1 2A1	$1\pm be^{4x}$ CAO Getting from expression in e^{4x} to e^{2x} and e^{-2x} only Using sinh2x and cosh2x in terms of $(e^{2x} + e^{-2x})$ and $(e^{2x} - e^{-2x})$ CSO – answer given	
3. (a)	$x^{2}-10x+34 = (x-5)^{2}+9$ so $\frac{1}{x^{2}-10x+34} = \frac{1}{(x-5)^{2}+9} = \frac{1}{u^{2}+9}$ (mark can be earned in either part (a) or (b))	B1
	$I = \int \frac{1}{u^2 + 9} du = \left[\frac{1}{3} \arctan\left(\frac{u}{3}\right) \right] I = \int \frac{1}{(x - 5)^2 + 9} du = \left[\frac{1}{3} \arctan\left(\frac{x - 5}{3}\right) \right]$	M1 A1
	Uses limits 3 and 0 to give $\frac{\pi}{12}$ Uses limits 8 and 5 to give $\frac{\pi}{12}$	DM1 A1 (5)
(b) Alt 1	$I = \ln\left(\left(\frac{x-5}{3}\right) + \sqrt{\left(\frac{x-5}{3}\right)^2 + 1}\right) \text{ or } I = \ln\left(\frac{x-5 + \sqrt{(x-5)^2 + 9}}{3}\right)$	M1 A1
	or $I = \ln\left((x-5) + \sqrt{(x-5)^2 + 9}\right)$ Uses limits 5 and 8 to give $\ln(1+\sqrt{2})$.	DM1 A1 (4)
(b) Alt 2	Uses u = x-5 to get $I = \int \frac{1}{\sqrt{u^2 + 9}} du = \left[\operatorname{arsinh}\left(\frac{u}{3}\right) \right] = \ln\left\{ u + \sqrt{u^2 + 9} \right\}$ Uses limits 3 and 0 and ln expression to give $\ln(1 + \sqrt{2})$.	M1 A1 DM1 A1
(b) Alt 3	Use substitution $x-5=3\tan\theta$, $\frac{dx}{d\theta}=3\sec^2\theta$ and so	(4) M1 A1
	$I = \int \sec \theta d\theta = \ln(\sec \theta + \tan \theta)$ Uses limits 0 and $\frac{\pi}{4}$ to get $\ln(1 + \sqrt{2})$.	DM1 A1 (4)
1M1 1A1 2DM1	<u>Notes:</u> CAO allow recovery in (b) Integrating getting k arctan term CAO Correctly using limits. CAO	

Question Number	Scheme	Marks	
1A1 2DM1	Integrating to get a ln or hyperbolic term CAO Correctly using limits. CAO		
4. (a)	$I_{n} = \left[\frac{x^{3}}{3}(\ln x)^{n}\right] - \int \frac{x^{3}}{3} \times \frac{n(\ln x)^{n-1}}{x} dx$ $= \left[\frac{x^{3}}{3}(\ln x)^{n}\right]_{1}^{e} - \int_{1}^{e} \frac{nx^{2}(\ln x)^{n-1}}{3} dx$	M1 A1	
	$=\left[\frac{x^{3}}{3}(\ln x)^{n}\right]_{1}^{e} - \int_{1}^{e} \frac{nx^{2}(\ln x)^{n-1}}{3}dx$	DM1	
	$\therefore I_n = \frac{e^3}{3} - \frac{n}{3} I_{n-1} \qquad *$	A1cso	(4)
(b)	$I_{0} = \int_{1}^{e} x^{2} dx = \left[\frac{x^{3}}{3}\right]_{1}^{e} = \frac{e^{3}}{3} - \frac{1}{3} \text{ or } I_{1} = \frac{e^{3}}{3} - \frac{1}{3} \left(\frac{e^{3}}{3} - \frac{1}{3}\right) = \frac{2e^{3}}{9} + \frac{1}{9}$ $I_{1} = \frac{e^{3}}{3} - \frac{1}{3}I_{0}, I_{2} = \frac{e^{3}}{3} - \frac{2}{3}I_{1} \text{ and } I_{3} = \frac{e^{3}}{3} - \frac{3}{3}I_{2} \text{ so } I_{3} = \frac{4e^{3}}{27} + \frac{2}{27}$	M1 A1 M1 A1	
(a)1M1 1A1 2DM1	$I_{1} = \frac{c}{3} - \frac{1}{3}I_{0}, I_{2} = \frac{c}{3} - \frac{2}{3}I_{1} \text{ and } I_{3} = \frac{c}{3} - \frac{3}{3}I_{2} \text{ so } I_{3} = \frac{4c}{27} + \frac{2}{27}$ $\frac{\text{Notes:}}{\text{Using integration by parts, integrating } x^{2}, \text{ differentiating } (\ln x)^{n}$ CAO Correctly using limits 1 and e CSO answer given		(4) 8
1A1 2M1	Evaluating I_0 or I_1 by an attempt to integrate something CAO Finding I_3 (also probably I_1 and I_2) If 'n's left in M0 I_3 CAO		

	advancing le	arning, changi I	ing l
Question Number	Scheme	Marks	
5. (a)	Graph of $y = 3\sinh 2x$ Shape of $-e^{2x}$	B1 B1	
	graph	D 1	
	Asymptote: $y = 13$	B1	
	Value 10 on y axis and value 0.7 or $\frac{1}{2} \ln(\frac{13}{3})$ on x axis	B1	(4)
			(4)
(b)	Use definition $\frac{3}{2}(e^{2x} - e^{-2x}) = 13 - 3e^{2x} \rightarrow 9e^{4x} - 26e^{2x} - 3 = 0$ to form quadratic	M1 A1	
		DM1 A1	
	$\therefore e^{2x} = -\frac{1}{9} \text{ or } 3$ $\therefore x = \frac{1}{2} \ln(3)$	B1	
	2		(5)
	Notes:		9
2B1 3B1 4B1 (b) 1M1 1A1 2DM1 2A1	y = 3sinh2x first and third quadrant. Shape of $y = -e^{2x}$ correct intersects on positive axes. Equation of asymptote, $y = 13$, given. Penlise 'extra' asymptotes here Intercepts correct both Getting a three terms quadratic in e^{2x} Correct three term quadratic Solving for e^{2x} CAO for e^{2x} condone omission of negative value. CAO one answer only		
	Mathematics EP3 (6669) June 2011		

Question Number	Scheme	Marks	
6. (a)	$\mathbf{n} = (2\mathbf{j} - \mathbf{k}) \times (3\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}) = 6\mathbf{i} - 3\mathbf{j} - 6\mathbf{k}$ o.a.e. (e.g. $2\mathbf{i} - \mathbf{j} - 2\mathbf{k}$)	M1 A1	(2)
(b)	Line <i>l</i> has direction $2\mathbf{i} - 2\mathbf{j} - \mathbf{k}$ Angle between line <i>l</i> and normal is given by $(\cos\beta \text{ or } \sin\alpha) = \frac{4+2+2}{\sqrt{9}\sqrt{9}} = \frac{8}{9}$	B1 M1 A1ft	
	$\alpha = 90 - \beta = 63$ degrees to nearest degree.	A1 awrt	(4)
(c) Alt 1	Plane <i>P</i> has equation $\mathbf{r}.(2\mathbf{i} - \mathbf{j} - 2\mathbf{k}) = 1$ Perpendicular distance is $\frac{1 - (-7)}{\sqrt{9}} = \frac{8}{3}$	M1 A1 M1 A1	
(c) Alt 2	Parallel plane through A has equation $\mathbf{r} \cdot \frac{2\mathbf{i} - \mathbf{j} - 2\mathbf{k}}{3} = \frac{-7}{3}$	M1 A1	(4) 10
	Plane P has equation $\mathbf{r} \cdot \frac{2\mathbf{i} - \mathbf{j} - 2\mathbf{k}}{3} = \frac{1}{3}$ So O lies between the two and perpendicular distance is $\frac{1}{3} + \frac{7}{3} = \frac{8}{3}$	M1 A1	
(c) Alt 3	Distance A to $(3,1,2) = \sqrt{2^2 + 2^2 + 1^2} = 3$ Perpendicular distance is '3' sin $\alpha = 3 \times \frac{8}{9} = \frac{8}{3}$	M1A1 M1A1	(4)
(c) Alt 4	Finding Cartesian equation of plane P: $2x - y - 2z - 1 = 0$ $d = \frac{ n_1 \alpha + n_2 \beta + n_3 \gamma + d }{\sqrt{n_1^2 + n_2^2 + n_3^2}} = \frac{ 2(1) - 1(3) - 2(3) - 1 }{\sqrt{2^2 + 1^2 + 2^2}} = \frac{8}{3}$	M1 A1 M1A1	(4)
A1 (b) B1 M1 1A1ft 2A1 (c) 1M1 1A1 2M1	Angle between $2\mathbf{i} - \mathbf{j} - 2\mathbf{k}$ and $2\mathbf{i} - 2\mathbf{j} - \mathbf{k}$, formula of correct form		

Question Number	Scheme	Marks
7. (a)	Det M = $k(0-2)+1(1+3)+1(-2-0) = -2k+4-2 = 2-2k$	M1 A1
(b)	$\mathbf{M}^{T} = \begin{pmatrix} k & 1 & 3 \\ -1 & 0 & -2 \\ 1 & -1 & 1 \end{pmatrix} \text{ so cofactors} = \begin{pmatrix} -2 & -1 & 1 \\ -4 & k - 3 & k + 1 \\ -2 & 2k - 3 & 1 \end{pmatrix}$	M1
	$ (-1 \text{ A mark for each term wrong}) \mathbf{M}^{-1} = \frac{1}{2 - 2k} \begin{pmatrix} -2 & -1 & 1 \\ -4 & k - 3 & k + 1 \\ -2 & 2k - 3 & 1 \end{pmatrix} $	M1 A3
(c)	Let (x, y, z) be on l_1 . Equation of l_2 can be written as $\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \\ 7 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ 1 \\ 3 \end{pmatrix}$.	B1
	Use $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \mathbf{M}^{-1} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ with $k = 2$. i.e. $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{1}{-2} \begin{pmatrix} -2 & -1 & 1 \\ -4 & -1 & 3 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 4+4\lambda \\ 1+\lambda \\ 7+3\lambda \end{pmatrix}$	M1
	$\therefore \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3\lambda + 1 \\ 4\lambda - 2 \\ 2\lambda \end{pmatrix}$	M1 A1
	and so $(\mathbf{r} - \mathbf{a}) \times \mathbf{b} = 0$ where $\mathbf{a} = \mathbf{i} - 2\mathbf{j}$ and $\mathbf{b} = 3\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$ or equivalent or $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ where $\mathbf{a} = \mathbf{i} - 2\mathbf{j}$ and $\mathbf{b} = 3\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$ or equivalent	B1ft (5
· ·	<u>Notes:</u> Finding determinant at least one component correct. CAO	
(b) 1M1	Finding matrix of cofactors or its transpose	
2M1	Finding inverse matrix, 1/(det) cofactors + transpose	
	At least seven terms correct (so at most 2 incorrect) condone missing det	
	At least eight terms correct (so at most 1 incorrect) condone missing det All nine terms correct, condone missing det	
(c) 1B1	Equation of l_2	
	Using inverse transformation matrix correctly	
	Finding general point in terms of λ . CAO for general point in terms of one parameter	
2B1	ft for vector equation of their l_1	

Uses $\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{b\cosh\theta}{a\sinh\theta}$ or $\frac{2x}{a^2} - \frac{2yy'}{b^2} = 0 \rightarrow y' = \frac{xb^2}{ya^2} = \frac{b\cosh\theta}{a\sinh\theta}$ So $y - b\sinh\theta = \frac{b\cosh\theta}{a\sinh\theta}(x - a\cosh\theta)$	M1 A1 M1
$\therefore ab(\cosh^2 \theta - \sinh^2 \theta) = xb \cosh \theta - ya \sinh \theta \text{ and as } (\cosh^2 \theta - \sinh^2 \theta) = 1$ $xb \cosh \theta - ya \sinh \theta = ab *$	A1cso (4)
<i>P</i> is the point $(\frac{a}{\cosh\theta}, 0)$	M1 A1 (2)
l_2 has equation $x = a$ and meets l_1 at $Q(a, \frac{b(\cosh \theta - 1)}{\sinh \theta})$	M1 A1 (2)
The mid point of PQ is given by $X = \frac{a(\cosh \theta + 1)}{2\cosh \theta}, Y = \frac{b(\cosh \theta - 1)}{2\sinh \theta}$	1M1 A1ft 2M1
$4Y^{2} + b^{2} = b^{2} \left(\frac{\cosh \theta + 1 - 2\cosh \theta + \sinh \theta}{\sinh^{2} \theta} \right)$ $= b^{2} \left(\frac{2\cosh^{2} \theta - 2\cosh \theta}{\sinh^{2} \theta} \right)$ $X (4Y^{2} + b^{2}) = ab^{2} \left(\frac{(\cosh \theta + 1)(\cosh \theta - 1)2\cosh \theta}{2\cosh \theta \sinh^{2} \theta} \right)$ Simplify fraction by using $\cosh^{2} \theta - \sinh^{2} \theta = 1$ to give $x(4y^{2} + b^{2}) = ab^{2} *$	3M1 4M1 A1cso
First line of solution as before $4Y^{2} + b^{2} = b^{2} \left(\coth^{2} \theta + \operatorname{cosech}^{2} \theta - 2 \coth \theta \operatorname{cosech} \theta + 1 \right)$ $= b^{2} \left(2 \coth^{2} \theta - 2 \coth \theta \operatorname{cosech} \theta \right)$ $X (4Y^{2} + b^{2}) = ab^{2} \left(\coth \theta (\coth \theta - \operatorname{cosech} \theta) (1 + \operatorname{sech} \theta) \right)$ Simplify expansion by using $\coth^{2} \theta - \operatorname{cosech}^{2} \theta = 1$ to give $x(4y^{2} + b^{2}) = ab^{2} *$	(6) 1M1A1ft 2M1 3M1 4M1 A1cso (6) 14
	So $y - b \sinh \theta = \frac{b \cosh \theta}{a \sinh \theta} (x - a \cosh \theta)$ $\therefore ab(\cosh^2 \theta - \sinh^2 \theta) = xb \cosh \theta - ya \sinh \theta$ and as $(\cosh^2 \theta - \sinh^2 \theta) = 1$ $xb \cosh \theta - ya \sinh \theta = ab$ * P is the point $(\frac{a}{\cosh \theta}, 0)$ l_2 has equation $x = a$ and meets l_1 at $Q(a, \frac{b(\cosh \theta - 1)}{\sinh \theta})$ The mid point of PQ is given by $X = \frac{a(\cosh \theta + 1)}{2\cosh \theta}, Y = \frac{b(\cosh \theta - 1)}{2\sinh \theta}$ $4Y^2 + b^2 = b^2 \left(\frac{\cosh^2 \theta + 1 - 2\cosh \theta + \sinh^2 \theta}{\sinh^2 \theta}\right)$ $= b^2 \left(\frac{2\cosh^2 \theta - 2\cosh \theta}{\sinh^2 \theta}\right)$ $X(4Y^2 + b^2) = ab^2 \left(\frac{(\cosh \theta + 1)(\cosh \theta - 1)2\cosh \theta}{2\cosh \theta \sinh^2 \theta}\right)$ Simplify fraction by using $\cosh^2 \theta - \sinh^2 \theta = 1$ to give $x(4y^2 + b^2) = ab^2$ * First line of solution as before $4Y^2 + b^2 = b^2 (\coth^2 \theta + \cosh^2 \theta - 2\coth \theta \cosh \theta + 1)$ $= b^2 (2 \cosh^2 \theta - 2 \coth \theta \cosh \theta)$ $X(4Y^2 + b^2) = ab^2 (\coth \theta (\coth \theta - \cosh \theta)(1 + \operatorname{sch} \theta))$

		earning, changing
Question Number	Scheme	Marks
8.		
	Finding gradient in terms of θ	
	CAO	
	Finding equation of tangent	
2A1	CSO (answer given) look for $\pm(\cosh^2\theta - \sinh^2\theta)$	
. ,	Putting $y = 0$ into their tangent	
A1ft	P found, ft for their tangent o.e.	
· · ·	Putting $x = a$ into their tangent.	
A1	CAO Q found o.e.	
· · ·	For Alt 1 and 2	
	Finding expressions, in terms of $\sinh \theta$ and $\cosh \theta$ but must be adding	
	Ft on their P and Q, $\frac{1}{2}$	
	Finding $4y^2 + b^2$	
	Simplified, factorised, maximum of 2 terms per bracket	
	Finding $x(4y^2 + b^2)$, completely factorised, maximum of 2 terms per bracket	
2A1	CSO	
(d)	For Alts 3, 4 and 5	
	Finding expressions, in terms of $\sinh \theta$ and $\cosh \theta$ but must be adding	
	Ft on their P and Q	
	Getting $\cosh \theta$ in terms of x	
	y or y^2 in terms of $\cosh \theta$ or $\sinh \theta$ in terms of x and y	
	Getting equation in terms of x and y only. No square roots.	
2A1	CSO	

			earning, changing liv
Question Number	Scheme		Marks
8(d)			
Alt 3	$X = \frac{a(\cosh \theta + 1)}{2\cosh \theta}, Y = \frac{b(\cosh \theta - 1)}{2\sinh \theta}$	As main scheme	1M1 A1ft
	$\cosh\theta = \frac{a}{2x-a}$	$\cosh\theta$ in terms of x	2M1
	$\sinh\theta = \frac{b(\cosh\theta - 1)}{2y} = \frac{b(a - x)}{(2x - a)y}$	$\sinh\theta$ in terms of x and y	3M1
		Using $\cosh^2\theta - \sinh^2\theta = 1$	4M1
	Simplifies to give required equation		
	$\int y^2 4x(a-x) = b^2(a-x)^2, \ x(4y^2+b^2) = ab^2$	7	A1cso
		_	(6)
			(0)
Alt 4	$X = \frac{a(\cosh \theta + 1)}{2\cosh \theta}, Y = \frac{b(\cosh \theta - 1)}{2\sinh \theta}$	As main scheme	1M1 A1ft
	$\cosh\theta = \frac{a}{2x - a}$	$\cosh\theta$ in terms of x	2M1
	$y^{2} = \frac{b^{2}(\cosh\theta - 1)^{2}}{4(\cosh^{2}\theta - 1)} = \frac{b^{2}(\cosh\theta - 1)}{4(\cosh\theta + 1)}$	y^2 in terms of $\cosh \theta$ only	3M1
	$y^{2} = \frac{b^{2} \left(\frac{2a - 2x}{2x - a}\right)^{2}}{4 \left(\frac{2x}{2x - a}\right)^{2}} \text{ o.e}$	Forms equation in x and y only	4M1
	Simplifies to give required equation	1	A1 cso (6)
Alt 5	$X = \frac{a(\cosh \theta + 1)}{2\cosh \theta}, Y = \frac{b(\cosh \theta - 1)}{2\sinh \theta}$	As main scheme	1M1 A1ft
	$\cosh\theta = \frac{a}{2x - a}$	$\cosh\theta$ in terms of x	2M1
	$y = \left(\frac{b(\cosh\theta - 1)}{2\sinh\theta}\right) = \left(\frac{b(\cosh\theta - 1)}{2\sqrt{\cosh^2\theta - 1}}\right)$	y in terms of $\cosh \theta$ only	3M1
	Eliminate $$ and forms equation in x and y		4M1
	Simplifies to give required equation	1	A1cso

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA027971 June 2011

For more information on Edexcel qualifications, please visit <u>www.edexcel.com/quals</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

